Contact Us
 Address:F6 Dongsheng
   buliding, 138#,DongYue street Taian City,Shandong Province
Tel: +0086-538-6999022   
Fax: +0086-538-6997199

Email:export.hzy@haisteel.com
Email:steel@haisteel.com

Web:www.haisteel.com
Classification of Stainless Steels(1)

 

Date:[9/10/2010]    Source:Shandong Hai Steel Co.,Ltd

 
Classification of Stainless Steels(1)

Abstract: Stainless steels are commonly divided into five groups: martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, duplex(ferritic-austenitic) stainless steels, and precipitation-hardening stainless steels. Stainless steels are available in the form of plate, sheet, strip, foil, bar, wire, semi-finished products, pipes, tubes and tubing.

Stainless steels are iron-based alloys containing at least 10.5% Cr. Few stainless steels contain more than 30% Cr or less than 50% Fe. They achieve their stainless characteristics through the formation of an invisible and adherent chromium-rich oxide surface film. This oxide forms itself in the presence of oxygen.

Other elements added to improve characteristics include nickel, molybdenum, copper, titanium, aluminum, silicon, niobium, nitrogen, sulfur, and selenium. Carbon is normally present in amounts ranging from less than 0.03% to over 1.0% in certain martensitic grades.

The selection of stainless steels may be based on corrosion resistance, fabrication characteristics, availability, mechanical properties in specific temperature ranges and product cost. However, corrosion resistance and mechanical properties are usually the most important factors in selecting a grade for a given application.

Stainless steels are commonly divided into five groups: martensitic stainless steels, ferritic stainless steels, austenitic stainless steels, duplex (ferritic-austenitic) stainless steels, and precipitation-hardening stainless steels.

The development of precipitation-hardenable stainless steels was spearheaded by the successful production of Stainless W by U.S. Steel in 1945. The problem of obtaining raw materials has been a real one, particularly in regard to nickel during 1950s when civil wars raged in Africa and Asia, prime sources of nickel, and Cold War politics played a role because Eastern-bloc nations were also prime sources of the element. This led to the development of a series of alloys (AISI 200 type) in which manganese and nitrogen are partially substituted for nickel. These stainless steels are still produced today.

Over the years, stainless steels have become firmly established as materials for cooking utensils, fasteners, cutlery, flatware, decorative architectural hardware, and equipment for use in chemical plants, dairy and food-processing plants, health and sanitation applications, petroleum and petrochemical plants, textile plants, and the pharmaceutical and transportation industries. Some of these applications involve exposure to either elevated or cryogenic temperatures; austenitic stainless steels are well suited to either type of service.

Modifications in composition are sometimes made to facilitate production. For instance, basic compositions are altered to make it easier to produce stainless steel tubing and casting. Similar modifications are made for the manufacture of stainless steel welding electrodes; here combinations of electrode coating and wire composition are used to produce desired compositions deposited weld metal.

Martensitic stainless steels are essentially alloys of chromium and carbon that possess a distorted body-centered cubic (bcc) crystal structure (martensitic) in the hardened condition. They are ferromagnetic, hardenable by heat treatments, and are generally resistant to corrosion only to relatively mild environments. Chromium content is generally in the range of 10.5 to 18%, and carbon content may exceed 1.2%. The chromium and carbon contents are balanced to ensure a martensitic structure after hardening.

General corrosion is often much less serious than localized forms such as stress corrosion cracking, crevice corrosion in tight spaces or under deposits, pitting attack, and intergranular attack in sensitized material such as weld heat-affected zones (HAZ). Such localized corrosion can cause unexpected and sometimes catastrophic failure while most of the structure remains unaffected, and therefore must be considered carefully in the design and selection of the proper grade of stainless steel.

Corrosive attack can also be increased dramatically by seemingly minor impurities in the medium that may be difficult to anticipate but that can have major effects, even when present in only part-per-million concentrations; by heat transfer through the steel to or from the corrosive medium; by contact trimmed only on the ends.

Stainless steels are available in the form of plate, sheet, strip, foil, bar, wire, semi-finished products, pipes, tubes, and tubing

Print】 【Top】 【Close

Copyright:Shandong Hai Steel Co.,Ltd   Address:F6 Dongsheng buliding,138#,DongYue street Taian City Aodobi
Tel:+0086-538-6999022    Fax:+0086-538-6997199   Email:steel@haisteel.com